Что мы знаем о земле вопросы

Что мы знаем о Земле?

Земля — третья планета от Солнца. Возраст Земли, по оценкам астрономов, — 4,54 миллиарда лет.

Вокруг Солнца Земля совершает свой путь со скоростью 30 километров в секунду. Люди, принимая участие в этом движении, совершенно не ощущают его. Чтобы наша планета могла улететь из Солнечной системы и отправиться путешествовать в бесконечном пространстве, ей необходимо придать скорость чуть больше 42 километров в секунду. Эта разница в 12 километров в секунду и предохраняет Землю от катастрофы, которая могла бы постичь ее.

Вокруг Солнца Земля движется по орбите, имеющей вид несколько сплющенного круга — эллипса. Земля летом (для Северного полушария) находится от Солнца на расстоянии 152 миллионов километров, а зимой — до 147 миллионов километров. Мы бываем в полдень ближе к Солнцу в период с января по июль, а с июля по январь — наоборот.

Земля состоит из металлического ядра (его внутренняя часть твердая, а внешняя — жидкая), вязкой мантии и земной коры. Мантия составляет 67% всей массы Земли и около 83% всего объёма Земли. Толщина коры колеблется от 6 км под океаном, до 30—50 км на континентах.

Земля — далеко не абсолютно твердое тело. Ее поверхность, подобно океану, испытывает отливы и приливы под воздействием Солнца и Луны. Различные участки планеты находятся в движении: поднимаются, опускаются и даже «путешествуют» в горизонтальном направлении.

Своим притяжением Земля удерживает вокруг себя атмосферу, которая состоит в основном из азота, кислорода, небольшого количества примесей (водород, углекислый газ и др.). Характерной особенностью нашей планеты является обилие воды. Моря и океаны составляют примерно 70% земной поверхности. Вода и водяные пары играют важную роль в протекании геофизических и биологических процессов на Земле. Жидкой воды, так необходимой для существования известных нам форм жизни, нет больше ни на одной планете Солнечной системы.


Вид Земли из космоса

Землю окружает магнитное поле, выполняющее роль ловушки для электрически заряженных частиц, приходящих из космического пространства. Далеко за пределами атмосферы наша планета окружена облаками частиц высоких энергий, образующих поля радиации, которые защищают земной шар от жестоких космических лучей, губительных для всего живого.

Планеты с такой же освещенностью, температурой и приблизительно таких же размеров, как наша Земля, во Вселенной встречаются нечасто. Но Вселенная настолько огромна, что, по скромным подсчетам, в одной нашей Галактике имеется 10 тысяч планет, напоминающих Землю. Ученые не исключают возможности, что на некоторых из них существует жизнь.

10 интересных фактов о Земле, которые вы, возможно, не знали

Планета Земля, кроме того, что является домом для человечества, еще и единственное известное место во Вселенной, где есть жизнь. Каждый год люди узнают что-то новое о Земле, и даже самый старый в мире человек не знает всех ее тайн и загадок. Журнал Universe Today предложил читателям 10 интересных и.

1. Твердь земной коры относительна. Поверхность планеты на самом деле состоит из литосферных плит, находящихся в постоянном движении. Тектонические плиты плавают на поверхности содержащейся в ядре Земли магмы. Именно тектоника несет ответственность за землетрясения, извержения вулканов, океанские впадины и собственно субдукцию, когда одна плита заходит под другую, в результате чего образуется новая земная твердь. А еще тектоника спасает Землю от парникового эффекта: организмы умирают и выделяют углекислый газ. Если бы они не поглощались землей, это привело бы к критической массе углекислого газа в атмосфере. Земля бы разогрелась и превратилась в ад.

2. Земля на самом деле не шар. Такое название для геометрической формы нашей планеты является научным консенсусом. В действительности Земля имеет форму сплюснутого шара – сжатого сфероида, или геоида. Сплюснута планета в направлении полюсов, а ее радиус в районе «талии» на 21 км больше. Этим, кстати, объясняется и другой интересный факт: величайшей горной вершиной в мире, с учетом формы Земли, является не Джомолунгма (или Эверест), как принято считать, а неактивный вулкан Чимборасо в Эквадоре.

3. Земля состоит из железа, кислорода и кремния. Если планету разделить по ее составу, выглядеть этот ряд будет так: 32,1 % железа, 30,1% кислорода, 15,1% кремния и 13,9% магния. При этом большая часть железа фактически находится в земном ядре – 88%. Что касается земной коры, то в ней больше всего кислорода – 47%.

4. 70% поверхности Земли не является землей. Это вода. Когда впервые люди посмотрели на Землю из космоса, именно тогда она получила свое второе имя – Голубая планета. Оставшиеся же 30% занимает так называемая континентальная кора со средней толщиной 35–45 км, доходящей до 75 км под горными массивами. Поднятие уровня Мирового океана, происходящее в результате глобального потепления и таяния ледников, – один из главных поводов для беспокойства человечества. Возможно, скоро процентное соотношение суши и воды придется пересмотреть.

5. Земная атмосфера простирается на расстояние до 10 тыс. км. Состоит атмосфера из нескольких слоев: тропосферы, стратосферы, мезосферы, термосферы и экзосферы. На расстоянии до 50 км от поверхности она более плотная, и по мере удаления от нее плотность и давление уменьшаются. Фактически 75% земной атмосферы содержится в первых 11 км от поверхности планеты. Экзосфера – самый высокий слой – является «воротами» в космическое пространство, где атмосферы нет вообще. Экзосфера в основном состоит из водорода с очень низкой плотностью, гелия и ряда тяжелых молекул – азота, кислорода и углекислого газа.

6. Расплавленное «железное» ядро Земли создает магнитное поле. Оно называется магнитосферой. По сути, сама планета представляет собой большой магнит с полюсами. По мнению ученых, магнитное поле генерируется в расплавленном внешнем ядре Земли, где жара создает конвекционные движения проводящих материалов, генерирующих электрические токи. Без магнитосферы планете пришел бы конец. Солнечный ветер ударил бы по Земле напрямую, обрушив на нее огромное количество излучения. Именно истощение магнитного щита, по одной из версий, стало причиной гибели предположительно плодородного в прошлом Марса.

7. Вращение Земли вокруг своей оси на самом деле занимает не 24 часа. Полный оборот планеты занимает 23 часа, 56 минут и 4 секунды. Это и есть звездные сутки, как их называют астрономы. Мы можем решить, что в таком случае сутки на самом деле на 4 минуты короче, время это будет накапливаться, и спустя несколько месяцев день станет ночью, а ночь – днем. Но не стоит забывать, что Земля вращается вокруг Солнца. А само Солнце постоянно сдвигается со своей позиции примерно на один градус. Если эти два движения сложить, получится как раз 24 часа.

8. Длительность земного года составляет вовсе не 365 дней. Цифра эта в реальности выглядит так: 365,2564 дня. Эти дополнительные 0,2564 дня приводят к появлению раз в четыре года високосного года, в котором 366 дней. Исключением из этого правила является, если год делится на 100 (1900, 2100 и т. д.), и если он при этом не кратен 400 (1600, 2000 и т. д.).

9. Известно, что у Земли есть одна луна с незатейливым названием Луна. Это единственный спутник нашей планеты. По крайней мере официально. Между тем существуют астероиды, орбита которых схожа с орбитой Земли, – Круитни (3753 Cruithne) и 2002 AA29. Они принадлежат к классу астероидов, сближающихся с Землей (АСЗ). Диаметр астероида Круитни составляет 5 км, и иногда его называют «второй луной». Несмотря на схожесть орбит, у Круитни свой уникальный путь вокруг Солнца. Диаметр 2002 AA29 составляет всего 60 м, и его орбита вокруг Земли имеет форму лошадиной подковы, каждые 95 лет приближая его к нашей планете. Примерно через 600 лет он может стать квазиспутником Земли, что, по мнению ученых, делает астероид перспективным для исследований.

10. Земля – единственная на сегодняшний день известная планета, на которой есть жизнь. Это так, несмотря на открытие воды и органических молекул на Марсе, аминокислот в космических туманностях, перспективы существования жизни под ледяной коркой луны Юпитера Европы или на сатурнианском Титане. Но если жизнь на других планетах есть, эксперименты и научная работа обязательно помогут ее найти. Например, NASA объявило о создании проекта NExSS. Его целью является обработка данных, присылаемых космическим телескопом «Кеплер» и другими схожими аппаратами, а также изучение экзопланет. Но, по сути, проект предназначен для поисков внеземной жизни. И все же, желая ученым удачи в поисках, пока приходится признавать, что Земля – единственное место, пригодное для жизни. И это самый главный факт в ее истории.

Пять главных вопросов о жизни на Земле: Как они могут предопределить направление поисков в других мирах?

Путешествуя по Солнечной системе, вы нигде не увидите столь удивительных картин, как на Титане, самом большом спутнике Сатурна. На просторах в сотни километров поверхность планеты устилают пустыни с наметенными ветром дюнами стометровой высоты. На фотографиях, сделанных за последние два года с космического корабля Cassini, видны также речные русла, когда-то прорезанные потоками жидкого метана. Когда в 2005 году зонд Huygens весом 315 кг отделился от корабля Cassini и сел на поверхность планеты, под ним оказалось вещество, напоминающее по своей консистенции влажный песок. Атмосфера Титана оказалась в 10 раз плотнее земной и состояла из сложных органических молекул.

«В астробиологическом плане Титан — самое любопытное место во всей Солнечной системе, — говорит Питер Уард, руководитель исследований, ведущихся в вашингтонском университете на гранты NASA. — Мы пока еще нигде не видели таких странных химических раскладов. Если на Титане обнаружится жизнь, это будут, судя по всему, по‑настоящему инопланетные существа».

В течение последних нескольких лет такие космические аппараты, как Cassini, предоставили нам широкие возможности внимательно разглядеть инопланетные пейзажи. Поиски жизни по всей Солнечной системе набрали обороты и вышли на новый уровень. С другой стороны, если верить некоторым ученым, самые глубокие и принципиальные выводы можно сделать на основании исследований, которые выполняются на Земле. Жизнь обнаружена здесь во множестве совершенно не приспособленных для нее закоулков — от Южного полюса до горячих источников.

Если мы сможем понять факторы, благодаря которым жизнь процветает на нашей планете, легче будет разобраться с условиями, при которых она может развиваться и в других уголках космоса. Какие формы способна принимать жизнь? Ответ на этот вопрос — это ответ, есть ли у нас живые соседи за пределами нашей планеты, и если есть, то где их искать — в Солнечной системе или еще дальше.

Как жизнь зародилась на Земле?

3 июля 2005 года космический корабль Deep Impact выпустил 400-килограммовый зонд, оставив его прямо на пути следования кометы Tempel 1, которая в это время неслась по своей орбите со скоростью 37 000 км/ч. Произошло столкновение, и зонд выбил в поверхности кометы воронку, а фонтан обломков рассеялся по окружающему космическому пространству. Это аккуратно спланированное событие фотографировалось камерами с корабля Deep Impact, а полученные фотографии исследователи изучают до сих пор. В результатах этой искусственной катастрофы они надеются найти намек на разгадку тайны, как же впервые образовалась жизнь на нашей Земле. Если мы поймем, как микробы зацепились за поверхность нашей планеты, легче будет искать планеты с правильной совокупностью необходимых условий. Вся жизнь на Земле построена из одних и тех же кирпичиков. Белки состоят из веществ, известных нам как аминокислоты. Все гены формируются из молекул (нуклеотидов), крепящихся к хребту из фосфатов и сахара (рибоза).

Главные загадки начинаются с вопроса, когда и как эти вещества попали на Землю. По всем прикидкам, жизнь могла зародиться от 4,55 (время зарождения планеты) до 3,45 (самая древняя не подлежащая сомнению датировка ископаемых земных микробов) миллиардов лет тому назад. Где-то в этом интервале какие-то компоненты жизни могли быть занесены на Землю кометой наподобие Tempel 1. Ученые, анализирующие результаты экспедиции Deep Impact, уже выяснили, что фонтан вещества, выброшенный из кратера, в изобилии содержит органические молекулы, из чего можно сделать вывод, что в составе самой кометы представлены существенные количества этих жизненно важных веществ.

Необходимое для жизни сырье могло самопроизвольно образоваться и на Земле. Два года назад ученые смогли искусственно получить рибозу, помогающую сформировать хребет ДНК. При синтезе были воспроизведены химические условия, которые могли бы сложиться в пустынях нашей планеты, когда она была еще молода.

Последняя часть головоломки — вопрос, как из уже упомянутых кирпичиков вдруг сложилась непростая конструкция пусть даже самых примитивных живых объектов. Некоторые исследователи предполагают, что океанские волны забрасывали обогащенную органикой воду на болотистые равнины приливной зоны, где жгучее солнце и ритмичный прибой действовали наподобие катализаторов в этом биохимическом реакторе. Другие думают, что жизнь зародилась в гуще илистых отложений вдоль хребтов, пролегавших по дну океана. В этих зонах из трещин в земной коре выделялись богатые энергией минеральные вещества.

«Эти загадки напоминают огромный пазл. Мы вытряхнули из коробки все фишки, и некоторые из них нам уже удалось соединить, — говорит Брюс Раннегар, научный директор Института астробиологии NASA. — Уже сложились отдельные кусочки неба и кое-что по краям, но пока еще неведомо, что же все-таки нарисовано на картинке».

По мере того, как в этой загадочной картинке начинают вырисовываться новые и новые фрагменты, она все точнее указывает направление поиска жизни за пределами нашей планеты. Четыре миллиарда лет назад на Марсе, судя по всему, была теплая, влажная атмосфера, а это значит, что там вполне могла зародиться жизнь. Но если всё, что необходимо для зарождения жизни, это смесь определенных ингредиентов и какой-либо источник энергии, тогда жизнь могла бы возникнуть и в менее гостеприимных мирах, например на Титане. Если глубже понять роль комет, удастся, может быть, оценить, на каких планетах из других солнечных систем наиболее вероятно существование жизни. Если окажется, что кометы служат транспортом, доставляющим на планеты ключевые химические компоненты, тогда астрономам нужно искать такие планетные системы, которые окружены густыми облаками комет.

Нужна ли для жизни вода?

Как мы знаем, для жизни необходима какая-либо жидкость. В газообразной среде молекулы носятся так быстро, что уже не способны участвовать в достаточно сложных химических реакциях, необходимых для существования жизни. В твердых телах, напротив, они вообще не способны двигаться. Жидкость — это растворитель, абсолютно необходимый для протекания жизненных процессов; именно благодаря этому растворителю молекулы способны совершать разнообразные движения, входя в контакт друг с другом.

Земля — довольно сырое место. Почти вся она покрыта океанами, озерами и реками. Ее атмосфера забита облаками, насыщена паром. Водой на километры вглубь пропитана земная кора, и континентальные платформы плавают на водяной смазке. У нас во всех жизненных процессах в качестве жидкого растворителя выступает вода — будь то в пустыне или в толще скальных пород. Значит ли это, что лишь вода способна поддерживать жизнь, или же просто жизнь на нашей планете воспользовалась для своих нужд самым доступным из подходящих для этой цели веществ?

Этот вопрос — один из самых обсуждаемых в науке астробиологии. Теоретически возможно, чтобы для какой-либо экзотической формы жизни на основе атомов углерода таким универсальным носителем послужил бы жидкий природный газ или еще какой-либо углеводород. А если жизнь будет строиться не на углероде, а на каком-либо другом элементе, скажем, на кремнии, она сможет развиваться и в среде с жидкостями другого типа.

Сегодня поиск жизни сосредотачивается в тех местах, где существует или когда-либо существовала вода в жидком состоянии. Однако некоторые астробиологи полагают, что не следует безосновательно сужать свое поле зрения. «Откуда вы знаете, что стратегия с лозунгом ‘ищи воду!’ не закрывает нам глаза на возможные более экзотические проявления жизни, которые вообще не нуждаются в воде?» — спрашивает Стивен Беннер из Фонда прикладных исследований в сфере молекулярной эволюции. Марс — это единственная планета с бесспорными свидетельствами существования воды. Еще вода имеется на спутнике Юпитера Европе и, вполне возможно, запасами воды располагает еще одна луна Юпитера — Энцелад. Однако на других небесных телах могут быть и другие жидкости, способные поддерживать жизнь. Над Юпитером висят облака из жидкого аммиака. Венера скрыта под одеялом из серной кислоты. На фотографиях Титана можно увидеть что-то очень похожее на озера жидкого метана.

Может ли жизнь существовать без Солнца?

Шахты Южной Африки обычно интересуют охотников за золотом и алмазами. Туллис Онстотт, геомикробиолог из Принстонского университета, отправился туда за другим сокровищем — он ищет жизнь, которая питалась бы ядерной энергией. Онстотт и его коллеги собирали образцы воды, которые просачивались в старые шурфы. Эти образцы отправлялись в лабораторию, где их анализировали на предмет наличия микроорганизмов. Обнаруженные в этой воде микробы обитали на глубине более 5 км под землей в среде, которая никоим образом не была связана с поверхностными водами. «Зона, в которой мы проводили исследования, — говорит Онстотт, — изолирована от земной поверхности уже в течение десятков миллионов лет».

Судя по всему, микробы существовали без солнечного света, питаясь органическими углеродными соединениями, которые возникали благодаря реакции СО и воды. Что касается энергии, то они использовали водород, который получался, когда излучаемые из скальных пород радиоактивные частицы дробили молекулы воды. «Мы видим, что здесь, внизу, могут без проблем существовать организмы, питающиеся ядерной энергией», — говорит Онстотт.

В свете этого открытия можно лелеять надежду, что жизнь существует на Марсе или на обледеневших лунах Сатурна и Юпитера. Спутники больших планет с периферии Солнечной системы были, по‑видимому, всегда слишком холодны, чтобы на их поверхности могла существовать жизнь. Тем не менее ученые не исключают вероятности, что организмы прямо сразу образовались глубоко под поверхностью этих планет, где и существуют по сей день.

Какая жара и какие холода приемлемы для живых организмов?

Если вы дрейфуете в океане или попали в пургу, Земля может показаться вам весьма недружелюбной, однако в сравнении с другими планетами она на удивление комфортна. Температура на ней относительно стабильна, так что вода в жидком состоянии доступна почти по всей поверхности планеты. Высотный озоновый слой защищает обитателей от опасных космических лучей, при этом на поверхности достаточно солнечного света для фотосинтеза. Благодаря этому на суше растут леса и прерии, а в океане размножаются миллиарды тонн водорослей.

В поисках внеземной жизни оказывается трудно где-то найти такие курортные условия, как на Земле. Рассмотрим хотя бы то, что происходит у наших ближайших соседей. Мы не знаем о каких-либо источниках воды в жидком состоянии на поверхности Марса, там нет никакой защиты от космических лучей, ветер несет пыль на тысячи километров, а температура падает до -870С. Тем временем Венера задыхается в углекислом газе, а температура на ее поверхности может достигать 4600С.

Впрочем, за последние годы ученые выяснили, что жизнь может существовать в исключительно суровых условиях. Особо теплолюбивые организмы (они называются «термофилы») могут процветать в воде с температурой 1200С. Их можно обнаружить в горячих источниках, например в гейзерах. Встречаются они и в морской воде поблизости от разломов на океанском дне, где через трещины выдавливается расплавленная горная порода. Химический состав этих существ приспособлен к тому, чтобы существовать при высоких температурах. Так, к примеру, особый набор ферментов не позволяет тепловому воздействию разорвать аккуратно упакованные белковые молекулы.

Жизнь способна противостоять и зверским морозам. Джин Бренчли, микробиолог из государственного университета штата Пенсильвания, растопил кусочек льда, который достали из-под самого основания одного из гренландских ледников толщиной 3000 метров. Этот лед пробыл там по крайней мере 120 000 лет. При ближайшем рассмотрении с помощью микроскопа в нем обнаружились шныряющие туда и сюда микроорганизмы. «Исследуемый кусочек льда был густо населен, — говорит Бренчли, — а его население оказалось весьма разнообразным».

Среди холодолюбивых микроорганизмов можно отметить и микробов, которые прекрасно себя чувствуют в холодных айсбергах Антарктики, в ледниках и в холодных озерах, скрытых глубоко под сибирской вечной мерзлотой.

Эти существа, которые принято называть «психрофилы», сталкиваются со специфическими проблемами и выработали для их решения удивительные способы. Для того чтобы не затвердеть, превратившись в кусочек льда, некоторые организмы производят особые составы, напоминающие по своему действию антифриз. Такие вещества препятствуют объединению молекул воды в кристаллы.

Астробиологи могут почерпнуть весьма полезные уроки как у термофилов, так и у психрофилов. Некоторые ученые придерживаются гипотезы, что в зарождении жизни на Земле ключевую роль сыграли именно термофилы. Если эта теория верна, тогда можно предположить, что жизнь способна зародиться на планетах, располагающих запасами горячей воды. В таком случае особенно хорошим кандидатом можно считать Марс — геологи полагают, что его скальные образования были созданы в ходе развития гидротермальной системы.

Впрочем, сегодня Марс — холодная планета, и чем дальше мы удаляемся от Солнца, тем более холодное окружение будет нас ожидать. «Если перебрать все угодья Солнечной системы, холодных там окажется куда больше, чем горячих, — говорит Питер Уард из университета штата Вашингтон. — Наше генеральное наступление должно развертываться в сторону холодной жизни».

Сейчас все взгляды прикованы к спутнику Сатурна Энцеладу. В марте NASA опубликовало фотографии, где гейзеры, расположенные на поверхности этого спутника, извергают в космос потоки ледяных кристаллов. Это весьма убедительное свидетельство, что в глубинах этого небесного тела могут таиться полости с водой в жидком состоянии. В свете этого открытия можно предположить, что и другие заледенелые луны Сатурна и Юпитера могут на поверку оказаться приютом для психрофилов.

Нужна ли для жизни ДНК?

После того как мы решим, где нужно искать жизнь, следует определиться, что же на самом деле мы ищем. Всё складывается так, что, если мы и можем надеяться на существование жизни за пределами Земли, в Солнечной системе она, скорее всего, будет принимать микроскопические формы. Сознавая такие расклады, исследователи из университета Карнеги-Меллон придумали способ, как можно было бы распознать живые организмы на молекулярном уровне.

«Мы попробовали создать прибор, который позволил бы подтвердить одновременное наличие в одном месте углеводородов, белков, ДНК и других биомаркеров. Если мы увидим эти вещества вместе, будут основания полагать, что они связаны с одним и тем же организмом», — говорит руководитель исследовательской группы Дэвид Веттергрин.

Уже в течение трех лет его команда ведет в чилийской пустыне Атакама испытания самоходного аппарата по имени Зоя (Zoe). Атакама — одно из самых засушливых мест на земле, и выживают там лишь немногие бактерии, водоросли и лишаи. Зоя разыскивает их следующим образом: сначала опрыскивает землю красителями, способными прилипать к биологическим молекулам, а затем освещает эти краски ярким светом. Пока что Зоя безупречно выполняет свою работу. Веттергрин полон оптимизма и полагает, что на Марсе этот метод покажет себя. Однако при своей нынешней конфигурации Зоя имеет и слабые стороны — она способна распознавать только организмы, состоящие из тех же химических веществ, что и жизнь на Земле. А ведь неразумно полагать, что рецепты, по которым сварена жизнь на Земле, представляют собой одну-единственную формулу.

Некоторые ученые пытались воссоздать простейшие формы жизни, используя для этого только РНК, а не ДНК. Возможно, что нынешняя жизнь развилась из организмов на базе РНК, и уже потом они уступили место более сложным формам. Некоторые исследователи допускают, что такие изначальные, «первобытные» существа все еще живут вокруг нас, спрятавшись в еще не исследованных местах, например в мелких порах скальной породы. Другие ученые для хранения генетической информации пользуются и более экзотическими молекулами — например ПНК (пептид-нуклеиновая кислота). В молекулах ДНК и РНК генетическая информация нанизывается на хребет из рибозы. В молекуле ПНК эта несущая основа составлена из пептидов, тех азотсодержащих «кирпичиков», из которых строятся белки.

Если жизнь способна формироваться только на основе ДНК, тогда она может зародиться лишь на тех планетах, где есть фосфор, азот и определенные типы сахаров. На некоторых планетах, например на Марсе, все эти ингредиенты могли оказаться в одном месте, в то время как на других, таких как Юпитер, это маловероятно. Если ученые сумеют разработать альтернативу ДНК, список планет, на которых стоит искать жизнь, принципиально расширится.

Конечно, нынешние разговоры об альтернативных формах жизни больше подобают не биологам, а голливудским сценаристам. Но покуда человечество полно решимости отправлять экспедиции в космос, в самом деле хорошо было бы иметь представление о том, куда лететь и что мы там собираемся встретить. Процесс такого осмысления уже начат, а факт, что даже в самых неприветливых уголках нашей планеты ютится жизнь, дает нам надежду на существование жизни в других мирах. Осталось только выбраться туда и хорошенько поискать.

Об отправке на Марс пилотируемой миссии читайте на сайте специального проекта журнала: «Наш Марс».

10 простых доказательств того, что Земля круглая

Люди давно знают, что Земля круглая, и находят все новые и новые способы показать, что наш мир не плоский. И все же, даже в 2016 году, на планете довольно много людей, которые твердо уверены в том, что Земля не круглая. Это страшные люди, они, как правило, верят в теории заговора, и с ними трудно спорить. Но они существуют. Как и «Общество плоской Земли». Смешно становится при одной мысли об их возможных аргументах. Но история нашего вида была интересной и изворотливой, опровергались даже твердо устоявшиеся истины. Вам не придется прибегать к сложным формулам, чтобы развеять теорию заговора плоской Земли.

Достаточно взглянуть вокруг и десять раз проверить: Земля однозначно, неизбежно, совершенно и абсолютно не плоская на 100%.

Сегодня люди уже знают, что Луна — это не кусочек сыра и не игривое божество, а явления нашего спутника хорошо объясняет современная наука. Но древние греки понятия не имели, что это такое, и в поисках ответа сделали несколько проницательных наблюдений, которые позволили людям определить форму нашей планеты.

Аристотель (который сделал довольно много наблюдений о сферической природе Земли) заметил, что во время лунных затмений (когда орбита Земли помещает планету точно между Солнцем и Луной, порождая тень) тень на лунной поверхности — круглая. Эта тень и есть Земля, а отбрасываемая ей тень прямо указывает на сферическую форму планеты.

Поскольку Земля вращается (поищите информацию на тему эксперимента с «маятником Фуко», если сомневаетесь), овальная тень, которая рождается в ходе каждого лунного затмения, говорит не только о том, что Земля круглая, но и не плоская.

Корабли и горизонт

Если вы недавно были в порту или просто прогуливались по пляжу, вглядываясь в горизонт, вы могли заметить очень интересное явление: приближающиеся корабли не просто «появляются» из горизонта (как должны были бы, будь мир плоским), а скорее выходят из моря. Причина того, что корабли буквально «выходят из волн», в том, что наш мир не плоский, а круглый.

Представьте себе муравья, который идет по поверхности апельсина. Если смотреть на апельсин с близкого расстояния, нос к плоду, вы увидите, как тело муравья медленно поднимается над горизонтом ввиду кривизны поверхности апельсина. Если проделать этот эксперимент с длинной дорогой, эффект будет другой: муравей будет медленно «материализоваться» в поле зрения, в зависимости от того, насколько острое у вас зрение.

Смена созвездий

Это наблюдение первым сделал Аристотель, который объявил Землю круглой, наблюдая за сменой созвездий при пересечении экватора.

Вернувшись из поездки в Египет, Аристотель заметил, что «в Египте и на Кипре наблюдаются звезды, которых не видели в северных регионах». Это явление можно объяснить лишь тем, что люди смотрят на звезды с круглой поверхности. Аристотель продолжал и заявил, что сфера Земли «небольших размеров, ведь в противном случае эффект такой легкой перемены местности не проявился бы так скоро».

Чем дальше вы от экватора, тем далее «известные» созвездия уходят к горизонту, сменяясь другими звездами. Этого не происходило бы, будь мир плоским.

Тени и палочки

Если вы воткнете палочку в землю, она даст тень. Тень движется по мере течения времени (на основе этого принципа древние люди изобрели солнечные часы). Если бы мир был плоским, две палочки в разных местах производили бы одну и ту же тень.

Но этого не происходит. Потому что Земля круглая, а не плоская.

Эратосфен (276–194 гг. до н. э.) использовал этот принцип, чтобы рассчитать окружность Земли с хорошей точностью.

Чем выше, тем дальше видно

Стоя на плоском плато, вы смотрите в сторону горизонта от вас. Вы напрягаете свои глаза, затем достаете любимый бинокль и смотрите через него, насколько могут видеть глаза (с помощью бинокулярных линз).

Затем вы взбираетесь на ближайшее дерево — чем выше, тем лучше, главное — не уронить бинокль. И снова смотрите, напрягая глаза, через бинокль за горизонт.

Чем выше вы заберетесь, тем дальше будет видно. Обычно мы склонны связывать это с препятствиями на Земле, когда за деревьями не видно леса, а за каменными джунглями — свободы. Но если вы будете стоять на идеально чистом плато, без каких-либо препятствий между вами и горизонтом, вы увидите намного больше свысока, чем с земли.

Все дело в кривизне Земли, конечно, и этого не было бы, будь Земля плоской.

Полет на самолете

Если вы когда-либо вылетали из страны, особенно куда подальше, вы должны были заметить два интересных факта о самолетах и Земле:

Самолеты могут лететь по относительно прямой линии очень долго и не падают за край мира. Они также могут летать вокруг Земли без остановки.

Если вы посмотрите в окно во время трансатлантического перелета, вы в большинстве случаев увидите кривизну земли на горизонте. Лучший вид кривизны был на «Конкорде», но этого самолета давно уж нет. С нового самолета Virgin Galactic горизонт должен быть абсолютно изогнутым.

Взгляните на другие планеты!

Земля отличается от других, и это бесспорно. В конце концов, у нас есть жизнь, и мы не находили пока планет с жизнью. Однако все планеты обладают схожими характеристиками, и было бы логично предположить, что если все планеты ведут себя определенным образом или демонстрируют конкретные свойства — особенно если планеты разделены расстоянием или сложились при различных обстоятельствах — то и наша планета аналогична.

Другими словами, если существует так много планет, которые образовались в разных местах и в разных условиях, но обладают схожими свойствами, вероятнее всего, и наша планета будет таковой. Из наших наблюдений стало ясно, что планеты круглые (а поскольку мы знали, как они образовались, мы знаем и почему у них такая форма). Нет никакой причины думать, что наша планета не будет такой же.

В 1610 году Галилео Галилей наблюдал вращение спутников Юпитера. Он описал их как маленькие планеты, вращающиеся вокруг большой планеты — и это описание (и наблюдение) не понравилось церкви, поскольку бросало вызов геоцентрической модели, в которой все вертелось вокруг Земли. Это наблюдение показало также и то, что планеты (Юпитер, Нептун, а позже и Венера) сферические и вращаются вокруг Солнца.

Плоскую планету (нашу или любую другую) будет настолько невероятно наблюдать, что перевернет практически все, что мы знаем о формировании и поведении планет. Это не только изменит все, что мы знаем о формировании планет, но и о формировании звезд (поскольку наше Солнце должно вести себя по-другому, приноравливаясь к теории плоской Земли), о скорости и движении космических тел. Короче, мы не просто подозреваем, что наша Земля круглая — мы это знаем.

Существование часовых поясов

В Пекине сейчас 12 ночи, полночь, солнца нет. В Нью-Йорке 12 пополудни. Солнце в зените, хотя его и трудно разглядеть под облаками. В Аделаиде, Австралия, час тридцать утра. Солнце взойдет очень нескоро.

Это можно было бы объяснить лишь тем, что Земля круглая и вращается вокруг собственной оси. В определенный момент, когда солнце светит на одной части Земли, на другом конце темно, и наоборот. Отсюда появляются часовые пояса.

Другой момент. Если бы солнце было «прожектором» (его свет прямо падал на конкретную область), а мир был плоским, мы видели бы солнце, даже если бы оно не светило над нами. Примерно так же вы можете увидеть свет прожектора на сцене театра, сами оставаясь в тени. Единственный способ создать два совершенно раздельных часовых пояса, один из которых будет всегда в темноте, а другой на свету, — это обзавестись сферическим миром.

Центр тяжести

Есть интересный факт о нашей массе: она притягивает вещи. Сила притяжения (гравитация) между двумя объектами зависит от их массы и от расстояния между ними. Проще говоря, гравитация будет притягивать в сторону центра масс объектов. Чтобы найти центр массы, нужно изучить объект.

Представьте сферу. Ввиду формы сферы, где бы вы ни стояли, под вами будет все то же количество сферы. (Представьте себе муравья, идущего по стеклянному шару. С точки зрения муравья, единственным признаком передвижения будет перемещение ног муравья. Форма поверхности не будет меняться совершенно). Центр массы сферы находится в центре сферы, то есть гравитация притягивает все, что на поверхности, в направлении центра сферы (прямо вниз), независимо от местоположения объекта.

Рассмотрим плоскость. Центр массы плоскости находится в центре, поэтому сила гравитации будет притягивать все, что на поверхности, к центру плоскости. Это значит, если вы будете на краю плоскости, гравитация будет тянуть вас в сторону центра, а не вниз, как мы привыкли.

И даже в Австралии яблоки падают сверху вниз, а не сбоку набок.

Снимки из космоса

За последние 60 лет освоения космоса мы запустили много спутников, зондов и людей в космос. Некоторые из них вернулись, некоторые продолжают оставаться на орбите и передавать прекрасные снимки на Землю. И на всех фотографиях Земля (внимание) круглая.

Если ваш ребенок будет спрашивать, откуда мы знаем, что Земля круглая, потрудитесь объяснить.

Сколько же людей способна выдержать планета Земля?

Поделиться сообщением в

Внешние ссылки откроются в отдельном окне

Внешние ссылки откроются в отдельном окне

Достаточно ли у Земли ресурсов для жизнеобеспечения стремительно растущего людского населения? Сейчас оно составляет более 7 миллиардов. Каково же предельное число жителей, при превышении которого устойчивое развитие нашей планеты станет уже невозможным? Корреспондент BBC Earth взялась разузнать, что на этот счет думают исследователи.

Перенаселенность. При этом слове современные политики морщатся; в дискуссиях по поводу будущего планеты Земля его часто называют «слоном в комнате».

Нередко о растущем народонаселении говорят как о самой большой угрозе для существования Земли. Но верно ли рассматривать эту проблему в отрыве от других современных глобальных вызовов? И так ли уж угрожающе много людей живет на нашей планете сейчас?

Понятно, что Земля в размерах не увеличивается. Пространство ее ограничено, да и ресурсы, необходимые для поддержания жизни, конечны. Еды, воды и энергии может просто не хватить на всех.

Выходит, что демографический рост представляет собой реальную угрозу благополучию нашей планеты? Вовсе необязательно.

«Проблема состоит не в количестве живущих на планете людей, а в количестве потребителей и в масштабе и характере потребления», — утверждает Давид Сэттертвейт, старший научный сотрудник лондонского Международного института по вопросам экологии и развития.

В поддержку своего тезиса он приводит созвучное высказывание индийского лидера Махатмы Ганди, который считал, что «в мире достаточно [ресурсов], чтобы удовлетворить потребности каждого человека, но не всеобщую жадность».

До недавних пор число живущих на Земле представителей современного вида человека (Homo sapiens) было относительно невелико. Всего 10 тысяч лет назад на нашей планете обитало не более нескольких миллионов человек.

Лишь в начале 1800-х годов людское население достигло миллиарда. А двух миллиардов — только в 20-е годы ХХ века.

В настоящее время население Земли составляет свыше 7,3 млрд человек. По прогнозам ООН, к 2050 году оно может достигнуть 9,7 млрд, а к 2100 году предположительно превысит 11 млрд.

Народонаселение стало стремительно расти лишь в последние несколько десятилетий, так что у нас пока нет исторических примеров, опершись на которые мы могли бы сделать прогнозы относительно возможных последствий этого роста в будущем.

Иначе говоря, если верно, что на нашей планете к концу века будет жить уже более 11 млрд человек, наш нынешний уровень знаний не позволяет нам сказать, возможно ли устойчивое развитие при таком населении — просто потому, что в истории не было еще прецедентов.

Впрочем, мы сможем лучше представить себе картину будущего, если проанализируем, где в ближайшие годы ожидается самый значительный прирост населения.

Давид Сэттертвейт говорит, что в основном демографический рост в следующие два десятилетия будет происходить в мегаполисах тех стран, где уровень доходов населения на нынешнем этапе оценивается как низкий или средний.

На первый взгляд, увеличение числа жителей таких городов, пусть даже на несколько миллиардов, не должно иметь серьезных последствий в масштабах всей планеты. Связано это с исторически низким уровнем потребления среди горожан в странах с низким и средним уровнем доходов.

Выбросы диоксида углерода (CO2) и других парниковых газов — это хороший показатель того, насколько высоким может быть потребление в том или ином городе. «О городах в странах с низким уровнем доходов мы знаем, что выбросы диоксида углерода (углекислого газа) и его эквивалентов составляют там меньше тонны на одного человека в год, — говорит Давид Сэттертвейт. — В странах же с высоким уровнем доходов значения этого показателя колеблются в пределах от 6 до 30 тонн».

Жители более экономически благополучных стран загрязняют окружающую среду в гораздо большей степени, чем люди, живущие в бедных странах.

Впрочем, существуют и исключения. Копенгаген — столица Дании, страны с высоким уровнем доходов, а Порто Аллегре находится в Бразилии, где уровень доходов выше среднего. В обоих городах высокий уровень жизни, однако выбросы (в расчете на душу населения) относительно невелики по объему.

По словам ученого, если мы посмотрим на образ жизни одного отдельно взятого человека, разница между богатыми и бедными категориями населения окажется еще более значительной.

Есть много городских жителей с низкими доходами, чей уровень потребления так низок, что на выбросы парниковых газов он не оказывает практически никакого влияния.

По достижении населением Земли численности в 11 млрд дополнительная нагрузка на ее ресурсы может оказаться сравнительно небольшой.

Однако мир меняется. И вполне возможно, что в мегаполисах с низким уровнем доходов выбросы углекислого газа в скором времени начнут расти.

Озабоченность вызывает и стремление жителей бедных стран к образу жизни и потреблению на уровне, который считается сейчас нормальным для государств с высокими доходами (многие скажут, что это было бы в некотором роде восстановлением социальной справедливости).

Но в таком случае рост городского населения принесет с собой и более серьезную нагрузку на экологию.

Уилл Стеффен, почетный профессор Феннеровской школы окружающей среды и общества при Государственном университете Австралии, говорит, что это соответствует общей тенденции, проявившейся в последнее столетие.

По его словам, проблема состоит не в росте населения, а в росте — еще более стремительном — мирового потребления (которое, разумеется, по миру распределено неравномерно).

Если так, то человечество может оказаться в еще более затруднительном положении.

Люди, живущие в странах с высоким уровнем доходов, должны внести свой вклад в сохранение устойчивого развития Земли при растущем населении.

Только при условии, что более богатые сообщества будут готовы снизить свой уровень потребления и позволить своим правительствам поддержать непопулярные меры, мир в целом сможет сократить негативное влияние человека на глобальный климат и более эффективно решать такие задачи, как экономное использование ресурсов и переработка отходов.

В проведенном в 2015 году исследовании журнал Journal of Industrial Ecology попробовал посмотреть на экологические проблемы с точки зрения домохозяйства, где в центре внимания — потребление.

Исследование показало, что на частных потребителей приходится более 60% выбросов парниковых газов, а в использовании земли, воды и других сырьевых ресурсов их доля составляет до 80%.

Более того, ученые пришли к выводу, что нагрузка на окружающую среду отличается от региона к региону и что в расчете на домохозяйство она выше всего в экономически благополучных странах.

Диана Иванова из Научно-технического университета норвежского города Тронхейм, которая разработала концепцию для данного исследования, объясняет, что в нем была изменена традиционная точка зрения на то, кто должен нести ответственность за промышленные выбросы, связанные с производством потребительских товаров.

«Мы все стремимся переложить вину на кого-нибудь другого, на государство или на предприятия», — отмечает она.

На Западе, к примеру, потребители часто высказывают мнение, что Китай и другие страны, производящие потребительские товары в промышленных количествах, должны нести ответственность и за выбросы, связанные с производством.

А вот Диана и ее коллеги считают, что равная доля ответственности лежит на самих потребителях: «Если мы станем следовать более разумным потребительским привычкам, состояние окружающей среды может существенно улучшиться». Согласно этой логике, необходимы радикальные перемены в базовых ценностях развитых стран: акцент должен переместиться с материальных благ на такую модель, где самое важное — это личное и общественное благополучие.

Но даже если в массовом потребительском поведении и произойдут благоприятные перемены, вряд ли наша планета сможет долго поддерживать население в 11 млрд человек.

Поэтому Уилл Стеффен предлагает стабилизировать население где-то в районе девяти миллиардов, а затем начать постепенно его уменьшать за счет сокращения рождаемости.

В действительности существуют признаки того, что некоторая стабилизация уже происходит, даже если по статистике население продолжает расти.

Прирост населения замедлялся начиная с 60-х годов прошлого века, и исследования уровня рождаемости, проведенные Департаментом ООН по экономическим и социальным вопросам, свидетельствуют, что в целом по миру уровень рождаемости в расчете на одну женщину упал с 4,7 ребенка в 1970-75 годах до 2,6 в 2005-10 гг.

Однако чтобы произошли какие-то действительно значимые перемены в данной области, понадобятся столетия, считает Кори Брэдшоу из Аделаидского университета Австралии.

Тенденция к росту рождаемости укоренилась так глубоко, что даже крупная катастрофа не сможет кардинальным образом поменять положение вещей, полагает ученый.

По результатам исследования, проведенного в 2014 году, Кори сделал вывод: даже если население Земли завтра сократилось бы на два миллиарда за счет повышенной смертности или если бы правительства всех стран, по примеру Китая, приняли непопулярные законы, ограничивающие количество детей, то к 2100 году количество людей на нашей планете в лучшем случае осталось бы на нынешнем уровне.

Стало быть, необходимо искать альтернативные способы сокращения рождаемости, и искать безотлагательно.

Один относительно простой способ — повысить статус женщин, прежде всего в том, что касается их возможностей образования и трудоустройства, считает Уилл Стеффен.

Фонд ООН в области народонаселения (ЮНФПА) подсчитал, что 350 млн женщин в беднейших странах не собирались рожать своего последнего ребенка, однако у них не было возможности предотвратить нежелательную беременность.

Если бы удовлетворялись основные потребности этих женщин в плане личностного развития, проблема перенаселения Земли из-за чрезмерно высокой рождаемости не стояла бы столь остро.

Следуя этой логике, стабилизация численности населения нашей планеты предполагает как сокращение потребления ресурсов, так и расширение прав женщины.

Но если население в 11 млрд неустойчиво, сколько же людей — теоретически – наша Земля способна прокормить?

Кори Брэдшоу считает, что практически невозможно указать конкретное число, поскольку оно будет зависеть от технологий в таких областях, как сельское хозяйство, энергетика и транспорт, а также от того, сколько людей мы готовы приговорить к жизни, полной лишений и ограничений, в том числе и в пище.

Довольно распространенным является мнение, что человечество уже превысило допустимый предел, учитывая тот расточительный образ жизни, который ведут многие его представители и от которого они вряд ли захотят отказаться.

В качестве аргументов в пользу этой точки зрения приводятся такие экологические тенденции, как глобальное потепление, сокращение биовидового разнообразия и загрязнение мирового океана.

На помощь приходит и социальная статистика, согласно которой в настоящее время один миллиард людей в мире фактически голодает, а еще миллиард страдает от хронического недоедания.

В специальном докладе ООН, опубликованном в 2012 году, представлено 65 вариантов максимальной численности народонаселения, при которой возможно устойчивое развитие нашей планеты.

Самый распространенный вариант — 8 миллиардов, т.е. чуть больше нынешнего уровня. Самый низкий показатель — 2 миллиарда. Самый высокий — 1024 миллиарда.

И поскольку предположения относительно допустимого демографического максимума зависят от целого ряда допущений, трудно сказать, какой из приведенных подсчетов ближе всего к реальности.

Но в конечном счете определяющим фактором будет то, как общество организует свое потребление.

Если некоторые из нас — или все мы — увеличат потребление, то верхний предел для приемлемой (с точки зрения устойчивого развития) численности населения Земли снизится.

Если же найдем возможности потреблять меньше, в идеале не отказываясь от благ цивилизации, то тогда планета наша сможет содержать больше народу.

Допустимый предел народонаселения будет зависеть также и от развития технологий, сферы, в которой сложно что-то прогнозировать.

В начале ХХ века проблема населенности связывалась в равной степени как с женским плодородием, так и с плодородностью сельскохозяйственных земель.

В своей книге «Тень будущего мира», изданной в 1928 году, Джордж Книббс предположил, что если население Земли достигнет 7,8 млрд, от человечества потребуется гораздо более высокая эффективность в обработке и использовании земель.

А спустя три года Карл Бош получил Нобелевскую премию за вклад в разработку химических удобрений, производство которых стало, надо полагать, важнейшим фактором в том демографическом буме, который случился в ХХ веке.

В отдаленном будущем научно-технический прогресс может значительно поднять верхнюю планку допустимой численности населения Земли.

С тех пор как люди в первый раз побывали в космосе, человечество уже не довольствуется наблюдением звезд с Земли, а всерьез рассуждает о возможности переселения на другие планеты.

Многие видные ученые-мыслители, включая физика Стивена Хокинга, заявляют даже, что колонизация иных миров будет иметь решающее значение для выживания человека и других представленных на Земле биологических видов.

Хотя в рамках запущенной в 2009 году экзопланетной программы НАСА и обнаружено большое количество сходных с Землей планет, все они слишком от нас удалены и мало изучены. (В рамках этой программы американским космическим агентством был создан оснащенный сверхчувствительным фотометром спутник «Кеплер» для поиска подобных Земле планет вне Солнечной системы, так называемых экзопланет.)

Так что переселение людей на другую планету — это пока что не выход. В обозримом будущем Земля будет единственным нашим домом, и мы должны научиться жить в нем экологично.

Это предполагает, конечно же, общее сокращение потребления, в частности, переход на образ жизни с низкими выбросами CO2, а также улучшение положения женщин по всему миру.

Только сделав какие-то шаги в этом направлении, мы сможем примерно подсчитать, сколько же планете Земля под силу содержать народу.

  • Прочитать оригинал этой статьи на английском языке можно на сайте BBC Earth.